ADDITIONAL PROPERTIES FOR WEAKLY P_0
AND RELATED PROPERTIES WITH
AN APPLICATION

CHARLES DORSETT

Department of Mathematics
Texas A&M University-Commerce
Texas 75429
USA
e-mail: charles.dorsett@tamuc.edu

Abstract

Within this paper, additional properties for weakly P_0 and related properties are given and the results are applied to give an internal, well-defined topological properties WP for which $WP = \text{weaker } P_0$ for each P_0 that exists.

1. Introduction and Preliminaries

T_0-identification spaces were introduced by Stone in 1936 [12].

Definition 1.1. Let (X, T) be a space, let R be the equivalence relation on X defined by xRy iff $\text{Cl}([x]) = \text{Cl}([y])$, let X_0 be the set of R equivalence classes of X, let $N : X \to X_0$ be the natural map, and let $Q(X, T)$ be the decomposition topology on X_0 determined by (X, T) and the map N. Then $(X_0, Q(X, Y))$ is the T_0-identification space of (X, T).

2010 Mathematics Subject Classification: 54A05, 54B05, 54B15.

Keywords and phrases: weakly P_0, not-topological properties, subspace properties.

Received September 29, 2017

© 2017 Scientific Advances Publishers
Within the 1936 paper [12], T_0-identification spaces were used to further characterize metrizable spaces.

Theorem 1.1. A space (X, T) is pseudometrizable iff $(X_0, Q(X, Q(X, T)))$, is metrizable. In the 1975 paper [11], T_0-identification spaces were used to further characterize Hausdorff spaces.

Theorem 1.2. A space (X, T) is weakly Hausdorff iff $(X_0, Q(X, T))$ is Hausdorff [9].

Within the 2015 paper [1], the metrizable and Hausdorff properties were generalized to weakly P_0 properties.

Definition 1.2. Let P be topological properties such that $P_0 = (P$ and $T_0)$ exists. Then a space (X, T) is weakly P_0 iff its T_0-identification space $(X_0, Q(X, T))$ has property P. A topological property P_0 for which weakly P_0 exists is called a weakly P_0 property [1].

In the work below, for a topological property Q, $(Q$ and $T_0)$ will be denoted by Q_0. In the 1936 paper [12], it was shown that for each space, its T_0-identification space has property T_0. Thus, for a topological property P for which P_0 exists, a space is weakly P_0 iff its T_0-identification space has property P_0.

Within the paper [1], it was shown that for a weakly P_0 property Q_0, a space is weakly Q_0 iff its T_0-identification space is weakly Q_0, which led to the introduction and investigation of T_0-identification P properties [2].

Definition 1.3. Let S be a topological property. Then S is a T_0-identification P property iff both a space and its T_0-identification space simultaneously shares property S.
In the introductory weakly Po paper [1], it was shown that weakly Po is neither T_0 nor “not-T_0”, where “not-T_0” is the negation of T_0. The need and use of “not-T_0” revealed “not-T_0” as a useful topological property and tool, motivating the inclusion of the long-neglected properties “not-P”, where P is a topological property for which “not-P” exists, as important properties for investigation and use in the study of topology. As a result, within a short time period, many new, important, fundamental, foundational, never before imagined properties have been discovered, expanding and changing the study of topology.

In past studies of weakly Po spaces and properties, for a classical topological property Qo, a special topological property W was sought such that for a space with property W, its T_0-identification space has property Qo, which then implies the initial space has property W. If past practices continue, the study of weakly Po spaces and properties would continue to be tedious and never ending. Thus, the question of whether there is a shortcut for the weakly Po space and property search process arose, which was resolved in a recent paper [3].

Answer 1.1. Let Q be a topological property for which both Qo and $(Q \text{ and } \text{“not-T_0”})$ exist. Then Q is a T_0-identification P property that is weakly Po and $Q = \text{weakly } Qo = (Qo \text{ or } (Q \text{ and } \text{“not-T_0”}))$ [3].

Answer 1.2. $\{Q \mid Q \text{ is a } T_0\text{-identification } P \text{ property}\} = \{Qo \mid Qo \text{ is a weakly } Po \text{ property}\} = \{Qo \mid Q \text{ is a topological property and } Qo \text{ exists}\} [3].$

Answer 1.3. $\{Q \mid Q \text{ is a } T_0\text{-identification } P \text{ property }\} = \{Q \mid Q \text{ is weakly } Po\} = \{Q \mid Q \text{ is a topological property and both } Qo \text{ and } (Q \text{ and } \text{“not-T_0”}) \text{ exist}\} [3].$

Thus, major progress was achieved in the study of weakly Po and related properties. If Q is a topological property for which both Qo and
If Q is a topological property for which Q_0 exists, then $Q = Q_0$ is a weakly Po property, but $Q = Q_0$ is not a T_0-identification P property or weakly Po. Within the recent paper [3], a topological property W that can be both T_0 and “not-T_0” was given that is a T_0-identification P property that is weakly Po such that $W = \text{weakly } Q_0$, again making the search process certain, and quick and easy.

Definition 1.4. Let Q be a topological property for which Q_0 exists. A space (X, T) has property QNO iff (X, T) is “not-T_0” and $(X_0, Q(X, T))$ has property Q_0 [3].

In the recent paper [3], it was shown that QNO exists and is a topological property, and $W = (Q_0 \text{ or } QNO)$ is a T_0-identification P property that is weakly Po with $W = \text{weakly } Q_0$. Thus, as stated above, for a topological property Q for which Q_0 exists and $Q = Q_0$, there is a certain, quick, and easy answer.

In the weakly Po paper [4], the use of T_0 and “not-T_0” revealed that $L = (T_0 \text{ or } \text{not-T_0})$ is the least of all topological properties. Since the existence of the least topological property L had not even been considered in past studies, its existence required a change in the definition of subspace properties with the removal of L as a subspace property [5]. Prior to the study of weakly Po spaces and properties, it was unknown whether for subspace properties P and Q, if $(P \text{ and } Q)$ exists. Within the 2016 paper [5], it was shown that for subspace properties P and Q, $(P \text{ and } Q)$ exists and, thus, is a subspace property. In the paper [5], it was shown that $\mathcal{P} = \{P \mid P \text{ is a subspace property}\}$ has no least element and in the paper [6], it was shown that \mathcal{P} has strongest element the singleton set property. Since, for the most part, “not-P”, where P is a topological
property for which “not-P” exists, had been ignored in the study of topology, the introduction and investigation of “not-(subspace property P)” in the paper [4] revealed that for a subspace property P, “not-(subspace property P)” is not a subspace property, which instantaneously gave many previously unknown examples of topological properties that are not subspace properties. Also, in the paper [4], it was shown that for subspace properties P and Q for which $(P$ and “not-Q”) exist, $(P$ and “not-Q”) is not a subspace property, giving many additional new topological properties that are now known to be not subspace properties. Within the 2017 paper [7], similar results were obtained for product properties.

Thus, the study of weakly P_0 and related properties has exposed a previously unknown, very fruitful territory within topology with properties and tools needed to successfully address previously unasked and/or unanswered questions. Below, the exploration of the recently discovered new territory within topology continues.

2. Additional Properties of Weakly P_0
and Related Properties

Within the paper [8], it was shown that L is weakly P_0 and $L_0 = T_0$ is a weakly P_0 property. In the paper [9], it was shown that for a “not-T_0” space (X, T), there exists a proper subspace (X_{TO}, T_{XTO}) that is homeomorphic to $(X_0, Q(X, T))$.

Definition 2.1. Let (X, T) be a “not-T_0” space and let C_x be the T_0-identification space equivalence class containing x. Then X_{TO} is a subset of X that contains exactly one element from each equivalence class C_x [9].
Theorem 2.1. Let \((X, T)\) be “not-T\(_0\)” and let \(X TO\) be as defined above. Then \((X TO, T_{X TO})\) is homeomorphic to \((X_0, Q(X, T))\) [9].

Below, the results above are used to further investigate weakly Po and related properties.

Theorem 2.2. Let \((X, T)\) be a “not-T\(_0\)” space and let \(X TO\) be as defined above. Then \((X TO, T_{X TO})\) is \(T_0\).

Proof. Since \((X_0, Q(X, T))\) is \(T_0\) and \(T_0\) is a topological property, then, by the results above, \((X TO, T_{X TO})\) is \(T_0\).

Theorem 2.3. For each space \((X, T)\) that is “not-T\(_0\)” \((X TO, T_{X TO})\) is a proper, dense subspace of \((X, T)\) that is \(T_0\).

Proof. By the results above, \(X TO\) is a proper subset of \(X\) and \((X TO, T_{X TO})\) is \(T_0\). Let \(x \in X \setminus X TO\). Let \(O \in T\) such that \(x \in O\). Let \(y \in X TO\) such that \(y \in C_x\). Since \(Cl(\{x\}) = Cl(\{y\})\), then \(y \in O\). Hence, \(X TO\) is dense in \((X, T)\).

Theorem 2.4. Let \(Q\) be a topological property for which \((Q \text{ and “not-T\(_0\)”})\) exists. Then the following are equivalent: (a) \(Q\) is a \(T_0\)-identification \(P\) property, (b) \(Q\) is a weakly Po property, (c) for each space \((X, T)\) with property \((Q \text{ and “not-T\(_0\)”})\), \((X TO, T_{X TO})\) has property \(Q\), and (d) for each space \((X, T)\) with property \((Q \text{ and “not-T\(_0\)”})\), \((X TO, T_{X TO})\) has property \(Q_0\).

Proof. By the results above, (a) and (b) are equivalent.

(b) implies (c): Let \((X, T)\) be a space with property \((Q \text{ and “not-T\(_0\)”})\). Since \(Q\) is weakly \(Q_0\), then \((X_0, Q(X, T))\) has property \(Q\). Since \((X, T)\) has property “not-T\(_0\)” then \((X TO, T_{X TO})\) is...
homeomorphic to \((X_0, Q(X, T))\) and since \(Q\) is a topological property,
\((X_{TO}, T_{XTO})\) has property \(Q\).

By Theorem 2.2, (c) implies (d).

(d) implies (b): Let \((X, T)\) be a space with property \((Q \text{ and not-}T_0")\).
Since \((X_{TO}, T_{XTO})\) has property \(Q_0\), then both \(Q_0\) and \((Q \text{ and not-}T_0")\)
exist and, by Answer 1.3 above, \(Q\) is weakly \(P_0\).

In the 2015 paper [2], it was proven that for topological properties \(Q\) and \(W\), which are both weakly \(P_0\), weakly \(Q_0 = \text{weakly } W_0\) iff \(Q_0 = W_0\).
Could \(Q = W\) be added as an equivalent statement?

Theorem 2.5. Let \(Q\) be a topological property that is weakly \(P_0\). Then \(Q\) is a \(T_0\)-identification \(P\) property and \(Q = \text{weakly } Q_0\).

Proof. By Answer 1.3 above, both \(Q_0\) and \((Q \text{ and not-}T_0")\) exist.
Then by Answer 1.1 above, \(Q\) is a \(T_0\)-identification \(P\) property and \(Q = \text{weakly } Q_0\).

Theorem 2.6. Let \(Q\) and \(W\) be topological properties, both of which are weakly \(P_0\). Then the following are equivalent: (a) weakly \(Q_0 = \text{weakly } W_0\), (b) \(Q_0 = W_0\), and (c) \(Q = W\).

Proof. By the results above, (a) and (b) are equivalent.

(a) implies (c): By Theorem 2.5, \(Q = \text{weakly } Q_0\) and \(W = \text{weakly } W_0\)
and, since weakly \(Q_0 = \text{weakly } W_0\), then \(Q = W\).

Clearly, (c) implies (a).

Theorem 2.7. Let \(Q\) and \(W\) be topological properties, both of which are weakly \(P_0\). Then the following are equivalent: (a) weakly \(Q_0\) implies weakly \(W_0\), (b) \(Q\) implies \(W\), and (c) \(Q_0\) implies \(W_0\).

Proof. (a) implies (b): Since \(Q = \text{weakly } Q_0\), \(W = \text{weakly } W_0\), and weakly \(Q_0\) implies weakly \(W_0\), then \(Q\) implies \(W\).
Clearly (b) implies (c).

(c) implies (a): Let \((X, T)\) be weakly \(Q_0\). Then \((X_0, Q(X, T))\) is \(Q_0\), which implies \((X_0, Q(X, T))\) is \(W_0\), which implies \((X, T)\) is weakly \(W_0\). Thus, weakly \(Q_0\) implies weakly \(W_0\).

3. Weakly \(P_0\) for Each Existent \(Q_0\)

Definition 3.1. A space \((X, T)\) has property \(SM\) iff for \(x\) and \(y\) in \(X\) such that \(Cl(\{x\}) \neq Cl(\{y\})\), there exists an open set \(U\) containing only one of \(x\) and \(y\).

Theorem 3.1. Every space has property \(SM\).

Proof. Let \((X, T)\) be a space. Let \(x\) and \(y\) be elements in \(X\) such that \(Cl(\{x\}) \neq Cl(\{y\})\). Then \(x \notin Cl(\{y\})\) or \(y \notin Cl(\{x\})\), say \(x \notin Cl(\{y\})\). Then \(x \in U = X \setminus Cl(\{y\})\) is open and \(y \notin U\). Thus \((X, T)\) has property \(SM\).

Corollary 3.1. \(SM\) is a topological property.

Theorem 3.2. Let \((X, T)\) be a space. Then \((X, T)\) has property \(L\) iff for \(x\) and \(y\) in \(X\) such that \(Cl(\{x\}) \neq Cl(\{y\})\), there exists an open set \(U\) containing only one of \(x\) and \(y\).

Proof. By Theorem 3.1, if \((X, T)\) has property \(L\), then \((X, T)\) has property \(SM\). Thus \(L\) implies \(SM\) and, since \(L\) is the least of all topological properties, then \(L = SM\).

Definition 3.2. Let \((X, T)\) be a space and for each \(x \in X\), let \(C_x\) be the \(T_0\)-identification class containing \(x\). Then \(O_X T_0\) is a subset of \(X\) containing exactly one element from each equivalence class \(C_x\).

Note that if \((X, T)\) is “not-\(T_0\)” then a subset \(O_X T_0\) of \(X\) is an \(X_T\) subset of \(X\).
Theorem 3.3. Let (X, T) be a space. Then $(OXTO, TOXTO)$ is homeomorphic to $(X_0, Q(X, T))$.

Proof. By Theorem 3.2, (X, T) is $(T_0$ or “not-T_0”). Consider the case that (X, T) is T_0. Then $X = OXTO$ and $(X, T) = (OXTO, TOXTO)$ is T_0. Since a space (Y, S) is T_0 iff the natural map $N : (Y, S) \to (Y_0, Q(Y, S))$ is a homeomorphism [10], then $(OXTO, TOXTO)$ is homeomorphic to $(X_0, Q(X, T))$. Thus, consider the case that (X, T) is “not-T_0”. Then $OXTO = XTO$ and, by Theorem 2.1, $(OXTO, TOXTO)$ is homeomorphic to $(X_0, Q(X, T))$.

Definition 3.3. Let Q be a topological property for which Q_0 exists. Then a space (X, T) has property WQ iff $(OXTO, TOXTO)$ has property Q_0.

Within the paper [3], it was shown that for a topological property Q such that Q_0 exists, $(Q_0$ or $QNO)$ is a T_0-identification P property, $(Q_0$ or $QNO) = \text{weakly} (Q_0$ or $QNO)_0 = \text{weakly} Q_0$, and $(Q_0$ or $QNO)$ is a weakly Po property, which is used below.

Theorem 3.4. Let Q be a topological property for which Q_0 exists and let (X, T) be a space. Then (X, T) has property WQ iff (X, T) has property $(Q_0$ or $QNO)$.

Proof. Suppose (X, T) has property WQ. Then $(OXTO, TOXTO)$ has property Q_0 and, since $(OXTO, TOXTO)$ is homeomorphic to $(X_0, Q(X, T))$, then $(X_0, Q(X, T))$ has property Q_0. Since Q_0 exists, then $(Q_0$ or $QNO)$ is a T_0-identification P property and $(Q_0$ or $QNO) = \text{weakly} Q_0$. Thus, a space (Y, S) is $(Q_0$ or $QNO)$ iff $(Y_0, Q(Y, S))$ is Q_0, and, since $(X_0, Q(X, T))$ is Q_0, then (X, T) is $(Q_0$ or $QNO)$.
Conversely, suppose \((X, T)\) has property \((Q_0 \text{ or } Q_{NO})\). Then \((X_0, Q(X, T))\) has property \(Q_0\) and, since \((OXTO, T_{OXTO})\) is homeomorphic to \((X_0, Q(X, T))\), then \((OXTO, T_{OXTO})\) has property \(Q_0\). Hence \((X, T)\) has property \(W_Q\).

Therefore, \(W_Q = (Q_0 \text{ or } Q_{NO})\).

Since both \(Q_0\) and \(Q_{NO}\) are topological properties, then \(W_Q\) is a topological property.

Corollary 3.2. Let \(Q\) be a topological property for which \(Q_0\) exists. Then \(W_Q\) is the special property for which a space has property \(W_Q\) iff its \(T_0\)-identification space has property \(Q_0\).

Below the results above are applied to determine \(W(T_1)\).

Let \((X, T)\) have property \(W(T_1)\).

Then \((OXTO, T_{OXTO})\) has property \((T_1)\) or \(T_1\). Suppose there exists a \(x \in X\) such that \(C_x \neq Cl(\{x\})\). Since \(C_x \subseteq Cl(\{x\})\), let \(y \in Cl(\{x\})\) that is not in \(C_x\). Let \(u, v \in OXTO\) such that \(x \in C_u\) and \(y \in C_v\). Then \(u\) and \(v\) are distinct elements in \(OXTO\) and since \((OXTO, T_{OXTO})\) is \(T_1\), there exists and open set \(V\) containing \(v\) and not \(u\). Let \(O \in T\) such that \(V = O \cap OXTO\). Then \(y \in O\) and \(x \notin O\), which contradicts \(y \in Cl(\{x\})\).

Thus, for each \(x \in X\), \(C_x = Cl(\{x\})\) and \(\{Cl(\{x\})| x \in X\}\) is a decomposition of \(X\).

Conversely, suppose \(\{Cl(\{x\})| x \in X\}\) is a decomposition of \(X\). Let \(u\) and \(v\) be distinct elements of \(OXTO\). Then \(\{v\} = Cl(\{v\}) \cap OXTO\) is closed in \(OXTO\). Hence singleton sets are closed in \(OXTO\) and \((OXTO, T_{OXTO})\) is \(T_1\).
Hence, a space \((X, T)\) has property \(W(T_1)\) iff \(\{\text{Cl}(\{x\})| x \in X\}\) is a decomposition of \(X\).

Past work in \(T_0\)-identification spaces and weakly \(Po\) spaces verify the result above. The application above is not required, but it does add comfort to use of the work above.

In the paper [3], it was shown that if \(Q\) is a topological property for which both \(Qo\) and \((Q \text{ and } \text{not-}T_0\)”) exist, then \(Q\) is a \(T_0\)-identification \(P\) property, \(QNO = (Q \text{ or } \text{”not-}T_0\)”), and \(Q = \text{weakly } Qo = (Qo \text{ or } QNO) = (Qo \text{ or } (Q \text{ and } \text{”not-}T_0\)”}), which greatly simplifies the above process.

Corollary 3.3. Let \(Q\) be a topological property for which both \(Qo\) and \((Q \text{ and } \text{”not-}T_0\)”) exist. Then \(WQ = Q\).

References

