FINITE GROUPS WITH SOME SUBGROUPS OF SYLOW SUBGROUPS S-SUPPLEMENTED

HONGWEI BAO and LONG MIAO

Department of Mathematics and Physics
Bengbu College
Bengbu 233000
P. R. China
e-mail: big_bao2003@163.com

Department of Mathematics
Yangzhou University
Yangzhou 225002
P. R. China

Abstract

A subgroup H is called s-supplemented in G, if there exists a subgroup K of G such that $G = HK$ and $H \cap K \leq H_{SG}$, where H_{SG} is the largest subnormal subgroup of G contained in H. In this paper, we investigate the influence of s-supplemented primary subgroups in finite groups. Some new results about p-nilpotency of finite groups are obtained.

1. Introduction

Let H be a subgroup of G. Then, a subgroup K of G is called a supplement of H in G, if $G = HK$. It is of interest to study the structure
of the group by using supplement of subgroups of finite groups. In [7] and [8], Kegel proved that a group \(G \) is soluble, if every maximal subgroup of \(G \) either has a cyclic supplement in \(G \) or if some nilpotent subgroup of \(G \) has a nilpotent supplement in \(G \). On the other hand, by the well-known Hall's theorem [6], a group \(G \) is soluble, if and only if every Sylow subgroup of \(G \) has a complement in \(G \). Recently, in [12, 13], Wang obtained some new characterizations for soluble and supersoluble groups by using some \(c \)-normal and \(c \)-supplemented subgroups.

In this paper, we remove the normal supplement condition and replace the \(c \)-supplement assumption with the \(s \)-supplement assumption for the subgroups of \(G \). We obtain the \(p \)-nilpotency of \(G \) and the related results.

All the groups in this paper are finite. Most of the notation is standard and can be found in [4] and [11].

Definition 1.1. A subgroup \(H \) of \(G \) is called \(s \)-supplemented in \(G \), if there exists a subgroup \(K \) of \(G \) such that \(G = HK \) and \(H \cap K \leq H_{SG} \), where \(H_{SG} \) is the largest subnormal subgroup of \(G \) contained in \(H \). In this case, \(K \) is said to be an \(s \)-supplement of \(H \) in \(G \).

Recall that a subgroup \(H \) of \(G \) is said to be \(c \)-supplemented in \(G \), if there exists a subgroup \(K \) of \(G \) such that \(G = HK \) and \(H \cap K \leq H_G \) [13]. A subgroup \(H \) is said to be \(s \)-normal in \(G \), if there exists a subnormal subgroup \(N \) of \(G \) such that \(HN = G \) and \(H \cap N \leq H_{SG} \) [14]. Hence, \(s \)-supplementation is a generalization of \(s \)-normality and \(c \)-supplementation. Moreover, we have \(s \)-supplementation cannot imply \(s \)-normality.

Example 1. \(A_5 = C_5A_4 \) and \(C_5 \cap A_4 = 1 \). Both \(C_5 \) and \(A_4 \) are \(c \)-supplemented in \(A_5 \) and so \(s \)-supplemented in \(A_5 \), but neither of them is \(s \)-normal in \(A_5 \), since \(A_5 \) is simple.

\(S \)-supplementation cannot imply \(c \)-supplementation.
Example 2. Let $G = Z_p \triangleleft Z_q$, where Z_p and Z_q are the groups of prime p and q, respectively, $(p < q)$. Then, evidently, every subgroup H of G such that $H \cong Z_p$ is s-normal and so s-supplemented in G, but not c-supplemented in G.

2. Preliminaries

For the sake of convenience, we first list here some known results, which will be useful in the sequel.

Lemma 2.1. Let G be a group. Then:

1. If H is s-supplemented in G, $H \leq M \leq G$, then H is s-supplemented in M.

2. Let $N \unlhd G$ and $N \leq H$. Then H is s-supplemented in G, if and only if H/ N is s-supplemented in G/ N.

3. Let π be a set of primes. Let N be a normal π'-subgroup and H be a π-subgroup of G. If H is s-supplemented in G, then HN/ N is s-supplemented in G/ N. If furthermore N normalizes H, then the converse also holds.

Proof. The claims in (1)-(3) are easy exercises left to the reader.

Lemma 2.2 [10, Lemma 2.7]. If $L \lhd G$ and L is a p-subgroup, then $L \leq O_p(G)$.

Lemma 2.3. Let π be a set of prime divisor of $|G|$. If $G \in E_\pi$, then every subnormal subgroup and every composition factor of G belongs to E_π.

Proof. It is clear that every normal subgroup of G belongs to E_π when $G \in E_\pi$. For every subnormal subgroup K of G, there exists a subnormal series of G

$$K = K_0 \unlhd K_1 \unlhd \cdots \unlhd K_{n-1} \unlhd K_n = G.$$
Since \(G \in E_\pi \), then \(K_{n-1} \in E_\pi \) and \(K \) belongs to \(E_\pi \) by the induction. On the other hand, it is easy to know every quotient group of \(G \) belongs to \(E_\pi \) when \(G \in E_\pi \). Similarly, every composition factor belongs to \(E_\pi \) by the induction. This completes the proof.

Lemma 2.4. Let \(G \) be a finite group and \(P \) be a Sylow \(p \)-subgroup of \(G \), where \(p \) is a prime divisor of \(|G|\) such that \(|G|, p - 1 = 1\). Suppose that there exists a maximal subgroup \(P_1 \) of \(P \) such that \(P_1 \) is \(s \)-supplemented in \(G \). Then \(G \) is not a non-abelian simple group and \(G \in D_p' \).

Proof. (1) \(G \in D_p' \).

We prove this by induction on the order of \(G \). Since \(P_1 \) is \(s \)-supplemented in \(G \), there exists a subgroup \(K \) of \(G \) such that \(P_1 K = G \) and \(P_1 \cap K \leq (P_1)_{SG} \).

If \(P_1 \cap K = 1 \), then \(|K|_p = p \). Let \(K_p \) denote a Sylow \(p \)-subgroup of \(K \). Then \(N_K(K_p) \mid C_K(K_p) \) is isomorphic to a subgroup of \(Aut(K_p) \). Hence, the order of \(N_K(K_p) \mid C_K(K_p) \) must divide \(|G|, p - 1 = 1\). Therefore, \(N_K(K_p) = C_K(K_p) \) by Burnside’s \(p \)-nilpotent theorem and hence \(K \) is \(p \)-nilpotent. It is clear that the normal \(p \)-complement \(K_p' \) is a Hall \(p' \)-subgroup of \(G \) and hence \(G \in E_{p'} \). If \(p \) is an odd prime, then \(G \) is soluble and hence \(G \in D_{p'} \). If \(p = 2 \), then [3, Main Theorem] implies that \(G \in C_2' \). By [1, P.547], if \(\pi \) is a set of odd primes and \(G \) satisfies \(E_\pi \) and \(E_{\pi'} \), then \(G \in D_{\pi'} \). Hence we have that \(G \in D_2' \).

If \(P_1 \cap K \neq 1 \) and \(K < G \), then \(P_1 \cap K = (P_1)_{SG} \cap K \ll K \). It is easy to see that \(P_1 \cap K \) is \(s \)-supplemented in \(K \). Since \(|P \cap K : P_1 \cap K| = |P : P_1| = p \), by the hypotheses, we have that \(K \in D_{p'} \). With the similar argument, we have \(G \in D_{p'} \).

Now, we may assume \(P_1 \cap K \neq 1 \) and \(K = G \), i.e., \(P_1 \ll G \). If \(p \) is an odd prime, then \(G \) is soluble since \(|G|, p - 1 = 1\) and hence \(G \in D_{p'} \). If \(p = 2 \), then there exists a subnormal series of \(G \) such that
$P_1 \unlhd M_1 \unlhd M_2 \unlhd \cdots \unlhd M_n = G$. It is easy to see that $|M_1 : P_1| = 2n_1$ or n_2, where n_1 and n_2 are both odd numbers. Now, we have M_1 is soluble. By the same argument, we obtain that G is soluble. Therefore $G \in D_{p'}$.

(2) G is not a non-abelian simple group.

Assume that G is a non-abelian simple group. By assumption, there exists a subgroup K of G such that $G = P_1K$ and $P_1 \cap K \leq (P_1)_S = 1$. In particular, $|G : K| = p^a$, $a \geq 1$. By [5, Theorem 1], we know that either K is a Hall p'-subgroup of G or G is isomorphic to $PSU_4(2) \cong PSp(3)$, and K is the parabolic subgroup of index 27 or G is isomorphic to A_n with $5 \leq n = p^r$, $r \geq 2$ and $K \cong A_{n-1}$. Clearly, K is not a Hall p'-subgroup of G since $|G : K| = |P_1 : P_1 \cap K| \leq |P_1| < |P|$. If $G \cong PSU_4(2)$, then $|G| = 2^6 \cdot 3^4 \cdot 5$ and $|K| = 2^6 \cdot 3^2 \cdot 5$. By (1) and the condition, $G \in E_{p'}$ and there exists a Hall p'-subgroup $G_{p'}$ of G such that $|G_{p'}| = 2^6 \cdot 5$. Hence, we have $|G : G_{p'}| = 3^4$, contrary to [5, Theorem 1]. But in the last case, $|P_1| = n = p^r$, $(n! / 2) = (12 \ldots p^r) / 2$. If $r > 1$, then $p^2 | |A_{n-1}|$ and $p^2 | |P : P_1|$. Therefore, G is not a non-abelian simple group.

The theorem is proved.

3. Main Results

Theorem 3.1. Let G be a finite group and P be a Sylow p-subgroup of G, where p is a prime divisor of $|G|$ with $(|G|, p - 1) = 1$. Suppose that every maximal subgroup of P is s-supplemented in G, then $G / O_p(G)$ is p-nilpotent.

Proof. Assume that the theorem is false and choose G to be a counterexample of smallest order. By Lemma 2.4, we have $G \in E_{p'}$. Furthermore, we have
(1) $O_p(G) = 1$.

If $O_p(G) = P$, then $G / O_p(G)$ is a p'-group and of course, it is p-nilpotent, a contradiction. If $1 \leq O_p(G) < P$, then $G / O_p(G)$ satisfies the hypotheses and the minimal choice of G implies that $G / O_p(G) \cong G / O_p(G) / O_p(G / O_p(G))$ is p-nilpotent, a contradiction.

(2) For every maximal subgroup P_1 of P, the s-supplement of P_1 is p-nilpotent.

Let P_1 be a maximal subgroup of P. By hypotheses, P_1 is s-supplemented in G. So, there exists a subgroup K_1 of G such that $G = P_1K_1$ and $P_1 \cap K_1 \leq (P_1)_G$. By Lemma 2.2, we have that $P_1 \cap K \leq (P_1)_G \leq O_p(G) = 1$. Now $|K_1|_p = p$. Let K_{1p} denote the Sylow p-subgroup of K_1. Then, $N_{K_1}(K_{1p}) / C_{K_1}(K_{1p})$ is isomorphic to a subgroup of $Aut(K_{1p})$. Hence, the order of $N_{K_1}(K_{1p}) / C_{K_1}(K_{1p})$ must divide $(|G|, p - 1) = 1$. Therefore $N_{K_1}(K_{1p}) = C_{K_1}(K_{1p})$. Burnside’s p-nilpotent theorem [11, 10.1.8] implies that K_1 is p-nilpotent.

(3) G is p-nilpotent.

Let P_1 be a maximal subgroup of P. By (1) and (2), there exists a p-nilpotent subgroup K_1 of G such that $G = P_1K_1$. Let $K_1 = K_1K_1p'$ and $N = N_G(K_1p')$. Clearly, $K_1 \leq N$ and $G = PN$. If $P \leq N$, then $N = G$, a contradiction. So, we may assume that $P \cap N < P$. There exists a maximal subgroup P_2 of P such that $P \cap N \leq P_2$. By hypotheses, P_2 is s-supplemented in G. (2) indicates that the supplement K_2 of P_2 is p-nilpotent. We denote $K_2 = K_2K_2p'$. Now both K_1p' and K_2p' are Hall p'-subgroup of G. Since $(|G|, p - 1) = 1$, by Lemma 2.4, we have $G \in Dp'$, these two subgroups are conjugate in G. Say $K_1p' = (K_2p')^g$.

Since $G = P_2K_2$ and $K_2p' \leq K_2$, we may choose $g \in P_2$. K_2^g normalizes
FINITE GROUPS WITH SOME SUBGROUPS ...

Based on the discussion as above and [2], $G/O_p(G)$ is p-nilpotent.

Lemma 3.2 [9, Lemma 2.4]. Let G be a finite group and p be a prime divisor of $|G|$ such that $(|G|, p^2 - 1) = 1$. Assume that the order of G is not divisible by p^3. Then G is p-nilpotent.

Theorem 3.3. Let G be a finite group and p be a prime divisor of $|G|$ such that $(|G|, p^2 - 1) = 1$. Assume that every second maximal subgroup of the Sylow p-subgroup of P is s-supplemented in G, then $G/O_p(G)$ is soluble p-nilpotent.

Proof. Assume that the claim is false and choose G to be a counterexample of minimal order. Furthermore, we have

1. $O_p(G) = 1$.

 If $O_p(G) = P$, then $G/O_p(G)$ is a p'-group and of course, it is p-nilpotent, a contradiction. If $O_p(G) = P_1$, where P_1 is the maximal subgroup of P, then $G/O_p(G)$ is p-nilpotent since $(|G|, p - 1) = 1$ and $|G/O_p(G)|_p = p$, a contradiction. If $O_p(G) = P_2$, where P_2 is the second maximal subgroup of P, then $p^3 | |G/O_p(G)|$. Hence, $G/O_p(G)$ is p-nilpotent by Lemma 3.2. If $1 < O_p(G) < P_2$, then $G/O_p(G)$ satisfies the hypotheses and the minimal choice of G implies that $G/O_p(G) \cong G/O_p(G)/O_p(G/O_p(G))$ is p-nilpotent, a contradiction.

2. $|G|$ is divisible by p^3.

 If $p^3 | |G|$, then G is p-nilpotent by Lemma 3.2, a contradiction.
(3) For every second maximal subgroup P_1 of a Sylow subgroup P of G, the s-supplement of P_1 is p-nilpotent.

Let P be a Sylow p-subgroup of G and P_1 be a second maximal subgroup of P. By hypotheses, P_1 is s-supplemented in G. So, there exists a subgroup K_1 of G such that $G = P_1K_1$ and $P_1 \cap K_1 \leq (P_1)_{SG}$. By Lemma 2.2, we have $P_1 \cap K_1 \leq (P_1)_{SG} \leq O_p(G) = 1$. Now $|K_1|_p = p^2$.

By hypotheses and Lemma 3.2, we have K_1 is p-nilpotent.

(4) G is p-nilpotent.

Let $N = N_G(K_{1_{p'}})$ and $K_1 = K_{1_{p'}}K_{1_{p'}}$. By (3), $K_1 \leq N$. So, we have $G = P_1K_1 = P_1N$. If $N = G$, then G is p-nilpotent, a contradiction. Let $P_1 \leq \overline{P}_1 \leq P$, where \overline{P}_1 is a maximal subgroup of Sylow subgroup P of G. Hence, $G = P_1K_1 = \overline{P}_1K_1 = \overline{P}_1N$. If $\overline{P}_1 \leq N$, then G is p-nilpotent, a contradiction. So, we may assume $\overline{P}_1 \cap N < \overline{P}_1$. We may choose a maximal subgroup P_2 of \overline{P}_1 such that $\overline{P}_1 \cap N \leq P_2$. It is clear that P_2 is the second maximal subgroup of P. By (3), P_2 is s-supplemented in G and the supplement K_2 of P_2 is p-nilpotent. We denote $K_2 = K_{2_{p'}}K_{2_{p'}}$.

Since $(|G|, p^2 - 1) = 1$, [3, Main Theorem] or the odd order theorem [2] implies that $G \in C_{p'}$. Now both $K_{1_{p'}}$ and $K_{2_{p'}}$ are Hall p'-subgroup of G, these two subgroups are conjugate in G. Let $K_{1_{p'}} = (K_{2_{p'}})^g$. Since $G = P_2K_2$ and $K_2 \leq N_G(K_{2_{p'}})$, we may choose $g \in P_2$. $K_{2_{p'}}^g$ normalizes $K_{2_{p'}}^g = K_{1_{p'}}^g$ and hence $K_{2_{p'}}^g \leq N$. Now $G = (P_2K_2)^g = P_2N$. Therefore $\overline{P}_1 = \overline{P}_1 \cap P_2N = P_2(\overline{P}_1 \cap N) = P_2$, contrary to the condition.

The final contradiction completes our proof.
Theorem 3.4. Let G be a finite group. Then G is soluble, if and only if every Sylow subgroup of G is s-supplemented in G.

Proof. If G is soluble, then by [6, Main Theorem], every Sylow subgroup of G is complemented in G. It is clear that every Sylow subgroup of G is s-supplemented in G.

Conversely, assume that every Sylow subgroup P of G is s-supplemented in G. By [6, Main Theorem], we only need to prove that P is complemented in G. Let K be an s-supplement of P in G. Then $G = PK$ and $P \cap K \leq P_{SG}$.

If $P \cap K = 1$, then P is complemented in G.

If $P \cap K \neq 1$, then $P \cap K = P_{SG} \cap K \lhd K$. Note that $|G|_p = |P| / |P_{SG} \cap K|$, hence $|K|_p = |P_{SG} \cap K|$ and $P \cap K = P_{SG} \cap K \leq K$. By the Schur-Zassenhaus theorem [11, Theorem 9.1.10], we have that $K = (P \cap K)K_{p'}$, where $K_{p'}$ is the Hall p'-subgroup of K.

Now, $G = PK = P(P \cap K)K_{p'} = PK_{p'}$ and $P \cap K_{p'} = 1$. Therefore, P is complemented in G. The theorem is proved.

References

